i-STAT G3+ Cartridge

Destinata all'uso con lo strumento i-STAT Alinity

NOME

i-STAT G3+ Cartridge - REF 03P78-50

USO PREVISTO

La cartuccia i-STAT G3+ con i-STAT Alinity System è destinata all'uso nella quantificazione *in vitro* di pH, pressione parziale di ossigeno e pressione parziale di anidride carbonica nel sangue intero arterioso o venoso.

Analita	Uso previsto
рН	Le misurazioni di pH, P O ₂ e P CO ₂ sono utilizzate per la diagnosi, il monitoraggio e il trattamento di disturbi respiratori e disturbi
Pressione parziale di ossigeno (P O ₂)	dell'equilibrio acido-base di natura metabolica e respiratoria.
Pressione parziale di anidride carbonica (P CO ₂)	Il bicarbonato è utilizzato nella diagnosi e nel trattamento di numerosi disturbi potenzialmente gravi associati alle variazioni dell'equilibrio acido-base nell'organismo.

RIEPILOGO E SPIEGAZIONE/SIGNIFICATIVITÀ CLINICA

Valori misurati:

рΗ

II pH è un indice dell'acidità o dell'alcalinità del sangue. Un pH arterioso <7,35 indica acidemia e >7,45 indica alcalemia. 1

Pressione parziale di ossigeno (PO₂)

La PO_2 (pressione parziale dell'ossigeno) è una misurazione della tensione o pressione dell'ossigeno disciolto nel sangue. Tra le cause di diminuzione dei valori di PO_2 vi sono ventilazione polmonare ridotta (ad esempio per ostruzione delle vie aeree o trauma cerebrale), compromissione dello scambio gassoso tra aria alveolare e sangue capillare polmonare (ad esempio per bronchite, enfisema o edema polmonare) e alterazione del flusso sanguigno all'interno del cuore o dei polmoni (ad esempio per difetti cardiaci congeniti o shunt di sangue venoso nel sistema arterioso senza ossigenazione polmonare).

Pressione parziale di anidride carbonica (PCO₂)

La PCO_2 viene utilizzata, insieme al pH, per valutare l'equilibrio acido-base. La PCO_2 (pressione parziale dell'anidride carbonica), la componente respiratoria dell'equilibrio acido-base, è una misura della tensione o pressione dell'anidride carbonica disciolta nel sangue. La PCO_2 rappresenta l'equilibrio tra la produzione cellulare di CO_2 e l'eliminazione di CO_2 mediante la ventilazione: una variazione della PCO_2 indica un'alterazione di questo equilibrio. Le cause dell'acidosi respiratoria primaria (aumento di PCO_2) sono ostruzione delle vie aeree, sedativi e anestetici, sindrome da distress respiratorio e broncopneumopatia cronica ostruttiva. Le cause dell'alcalosi respiratoria primaria (diminuzione di PCO_2) sono ipossia (con conseguente iperventilazione) dovuta a insufficienza cardiaca cronica, edema, disturbi neurologici e iperventilazione meccanica.

PRINCIPIO DEL TEST

i-STAT System utilizza metodi elettrochimici diretti (senza diluizione). I valori ottenuti mediante metodi diretti possono differire da quelli ottenuti con metodi indiretti (con diluizione). ²

Valori misurati:

Нα

Il pH è misurato mediante potenziometria diretta. Nel calcolo dei risultati di pH, la concentrazione è correlata al potenziale mediante l'equazione di Nernst.

PO₂

La **PO**₂ è misurata amperometricamente. Il sensore dell'ossigeno è simile a un convenzionale elettrodo di Clark. L'ossigeno passa attraverso una membrana gaspermeabile dal campione di sangue a una soluzione elettrolitica interna dove viene ridotto in corrispondenza del catodo. La corrente di riduzione dell'ossigeno è proporzionale alla concentrazione di ossigeno disciolto.

PCO₂

La **P**CO₂ è misurata mediante potenziometria diretta. Nel calcolo dei risultati di **P**CO₂, la concentrazione è correlata al potenziale mediante l'equazione di Nernst.

Algoritmo di correzione per la temperatura

pH, PO₂, e PCO₂ sono grandezze dipendenti dalla temperatura e sono misurate a 37 °C. I valori di pH, PO₂, e PCO₂ rilevati a una temperatura corporea diversa da 37 °C possono essere corretti immettendo la temperatura del paziente nella pagina del grafico dell'analizzatore. In questo caso, i risultati dei gas ematici saranno visualizzati sia a 37 °C che alla temperatura del paziente.

I valori di pH, PO₂ e PCO₂ alla temperatura del paziente (T_D) sono calcolati come segue: 3

$$pH(T_p) = pH - 0.0147(T_p - 37) + 0.0065(7.4 - pH)(T_p - 37)$$

$$PO_{2}(T_{p}) = PO_{2} \times 10^{\frac{5.49 \times 10^{-11} PO_{2}^{3.88} + 0.071}{9.72 \times 10^{-9} PO_{2}^{3.88} + 2.30}} (T_{p} - 37)$$

$$PCO_2(T_p) = PCO_2 \times 10^{0.019(T_p - 37)}$$

Valori calcolati:

HCO₃, TCO₂ e BE

- L'HCO₃ (bicarbonato), il tampone più abbondante nel plasma sanguigno, è un indicatore della capacità tamponante del sangue. Regolato principalmente dai reni, l'HCO₃ rappresenta la componente metabolica dell'equilibrio acido-base.
- La TCO₂ è una misura dell'anidride carbonica presente in diversi stati: CO₂ in soluzione fisica o legata in modo blando a proteine, anioni bicarbonato (HCO₃) o carbonato (CO₃) e acido carbonico (H₂CO₃). La misurazione della TCO₂ come parte del profilo elettrolitico è utile soprattutto per valutare la concentrazione di HCO₃. TCO₂ e HCO₃ sono utili per la valutazione dello squilibrio acido-base (insieme a pH e *P*CO₂) e dello squilibrio elettrolitico.
- Il valore di TCO₂ calcolato fornito da i-STAT System è determinato dai valori misurati e riportati di pH e
 PCO₂ secondo una forma semplificata e standardizzata dell'equazione di Henderson-Hasselbalch.
- Questa misurazione della TCO2 calcolata è tracciabile metrologicamente alle misurazioni di pH e PCO2 di i-STAT, che a loro volta sono tracciabili ai materiali di riferimento standard primari per pH e PCO2. Come tutti i parametri calcolati riportati da i-STAT System, l'utente può determinare in modo indipendente i valori di TCO2 dalle misurazioni di pH e PCO2 riportate utilizzando una combinazione dell'equazione per HCO3 e dell'equazione per TCO2.

L'eccesso di base del fluido extracellulare (ECF) o eccesso di base standard è definito come la concentrazione di base titolabile meno la concentrazione di acido titolabile quando si esegue la titolazione dell'ECF medio (plasma più liquido interstiziale) rispetto a un pH plasmatico arterioso di 7,40 a PCO₂ pari a 40 mmHg a 37 °C. L'eccesso di concentrazione di base nell'ECF medio rimane praticamente costante durante le variazioni acute della PCO₂ e riflette solamente la componente non respiratoria dei disturbi del pH.

Quando una cartuccia include sensori sia per il pH che per la *P*CO₂, vengono calcolati bicarbonato (HCO₃), anidride carbonica totale (TCO₂) ed eccesso di base (BE).³

```
log HCO_3 = pH + log PCO_2- 7,608

TCO_2 = HCO_3 + 0,03 PCO_2

BE_{ecf} = HCO_3-24,8 + 16,2(pH-7,4)

BE_b = (1 - 0,014*Hb) * [ HCO_3 - 24,8 + (1,43 * Hb + 7,7) * (pH - 7,4) ]
```

sO_2

- La sO₂ (saturazione di ossigeno) è la quantità di ossiemoglobina espressa come frazione della quantità totale di emoglobina in grado di legarsi all'ossigeno (ossiemoglobina più deossiemoglobina).
- La sO₂ è calcolata sulla base dei valori di PO₂ e pH misurati e di HCO₃ calcolato in base a PCO₂ e pH misurati. Tuttavia, questo calcolo assume un'affinità normale dell'ossigeno per l'emoglobina. Non tiene conto delle concentrazioni di difosfoglicerato eritrocitario (2,3-DPG) che influiscono sulla curva di dissociazione dell'ossigeno. Inoltre il calcolo non tiene conto degli effetti dell'emoglobina fetale o delle emoglobine disfunzionali (carbossiemoglobina, metemoglobina e solfoemoglobina). Errori clinicamente significativi possono derivare dall'incorporazione di un valore di sO₂ così stimato per la saturazione dell'ossigeno in ulteriori calcoli, come la frazione di shunt, o assumendo che il valore ottenuto sia equivalente alla frazione di ossiemoglobina.

$$SO_2=100 \qquad \frac{(X^3+150X)}{X^3+150X+23400}$$
 where $X = PO_2 \cdot 10^{(0.48(pH-7.4)-0.0013(HCO_3^{-25)})}$

Si veda di seguito per informazioni sui fattori che influiscono sui risultati. Alcune sostanze, come i farmaci, possono influire sui livelli di analita in vivo. ⁴ Se i risultati non sono coerenti con la valutazione clinica, il campione del paziente deve essere sottoposto nuovamente a test utilizzando un'altra cartuccia.

REAGENTI

Contenuto

Ogni cartuccia i-STAT contiene un elettrodo di riferimento, sensori per la misurazione di analiti specifici e una soluzione acquosa tamponata di calibrazione che contiene concentrazioni note di analiti e conservanti. Di seguito è riportato un elenco di ingredienti reattivi pertinenti alla cartuccia i-STAT G3+:

Sensore	Ingrediente reattivo	Fonte biologica	Quantità minima
рН	lone idrogeno (H+)	N/A	6,66 pH
P CO ₂	Biossido di carbonio (CO ₂)	N/A	25,2 mmHg

Avvertenze e precauzioni

- Solo per uso diagnostico in vitro.
- Le cartucce sono esclusivamente monouso. Non riutilizzare.
- Per tutte le avvertenze e le precauzioni, fare riferimento al Manuale operativo di i-STAT Alinity System.

Condizioni di conservazione

- Refrigerazione a 2–8 °C (35–46 °F) fino alla data di scadenza.
- Temperatura ambiente a 18–30 °C (64–86 °F). Per i requisiti di conservazione a temperatura ambiente, fare riferimento alla scatola delle cartucce.

STRUMENTI

La cartuccia i-STAT G3+ è destinata all'uso con lo strumento i-STAT Alinity (modello n. AN-500).

RACCOLTA E PREPARAZIONE DEI CAMPIONI PER L'ANALISI

Tipi di campione

Sangue intero arterioso o venoso. Volume del campione: 95 µL

Opzioni di prelievo ematico e tempistiche di test (tempo dal prelievo al riempimento della cartuccia) Dal momento che rapporti più elevati tra eparina e sangue possono influire negativamente sui risultati, riempire i tubi e le siringhe di prelievo del sangue fino alla massima capacità, seguendo le istruzioni dei produttori.

le istruzioni dei produttori.		
	Raccolta del campione per G3+	
Siringa	Senza anticoagulante	
-	Mantenere condizioni anaerobiche prima di riempire questa cartuccia.	
	Miscelare il campione immediatamente prima di riempire la cartuccia.	
	Riempire la cartuccia entro 3 minuti dal prelievo del campione.	
	Con anticoagulante eparina bilanciata	
	Mantenere condizioni anaerobiche prima di riempire questa cartuccia.	
	Miscelare il campione immediatamente prima di riempire la cartuccia.	
	Riempire la cartuccia entro 10 minuti dal prelievo del campione.	
Provetta	Senza anticoagulante	
sottovuoto	Mantenere condizioni anaerobiche prima di riempire questa cartuccia.	
	Miscelare il campione immediatamente prima di riempire la cartuccia.	
	Riempire la cartuccia entro 3 minuti dal prelievo del campione.	
	Con anticoagulante litio eparina	
	Mantenere condizioni anaerobiche prima di riempire questa cartuccia.	
	Miscelare il campione immediatamente prima di riempire la cartuccia.	
	Riempire la cartuccia entro 10 minuti dal prelievo del campione.	
Riempimento	Non consigliato	
della cartuccia		
direttamente dalla		
puntura cutanea		

PROCEDURA PER IL TEST DELLA CARTUCCIA

Preparazione per l'uso:

- 1. Le singole cartucce possono essere utilizzate dopo essere state tenute cinque minuti a temperatura ambiente. Un'intera scatola di cartucce deve essere tenuta a temperatura ambiente per un'ora.
- 2. Tutte le cartucce devono essere utilizzate immediatamente dopo l'apertura della busta.
- 3. Non utilizzare la cartuccia se la busta è stata forata.
- 4. Non rimettere in frigorifero le cartucce dopo averle portate a temperatura ambiente.

Come eseguire un test sul paziente

- 1. Nella schermata Home toccare "Perform Patient Test" (Esegui test paziente). In questo modo si avvia il percorso di test del paziente.
- 2. Per iniziare, seguire le istruzioni visualizzate sullo schermo andando a "Scan or Enter OPERATOR ID" (Eseguire la scansione o immettere ID OPERATORE)

- 3. Seguire le istruzioni visualizzate sullo schermo andando a "Scan or Enter PATIENT ID" (Eseguire la scansione o immettere ID PAZIENTE)
- Continuare a seguire le istruzioni visualizzate sullo schermo per procedere con il test del paziente. È richiesta la scansione "Scan (CARTRIDGE POUCH) Barcode" (Eseguire la scansione del codice a barre (BUSTA DELLA CARTUCCIA)). Le informazioni non possono essere immesse manualmente.
- 5. Viene visualizzata la schermata per la selezione del tipo di campione se è applicabile più di un tipo di campione; selezionare il tipo di campione, se applicabile.
- 6. Seguire le istruzioni visualizzate sullo schermo andando a "Close and Insert Filled Cartridge" (Chiudi e inserisci cartuccia riempita). I pulsanti di azione nella parte inferiore dello schermo consentono di avanzare, tornare indietro o mettere in pausa l'operazione.
- 7. Una volta inserita la cartuccia, viene visualizzato "Contacting Cartridge" (Contatto con la cartuccia in corso), seguito dalla barra del conto alla rovescia. Vengono inoltre visualizzati i seguenti avvisi: "Cartridge locked in instrument. Do not attempt to remove the Cartridge" (Cartuccia bloccata nello strumento. Non tentare di rimuovere la cartuccia) e "Testing Instrument Must Remain Level" (Test in corso lo strumento deve rimanere in piano).
- 8. Una volta completato il test, vengono visualizzati i risultati.

Tempo di analisi

Circa 130-200 secondi.

Controllo di qualità

Il regime di controllo di qualità i-STAT Alinity System comprende vari aspetti, con un design di sistema che riduce la possibilità di errori, che includono:

- Il sistema i-STAT Alinity esegue automaticamente una serie completa di controlli di qualità delle prestazioni dell'analizzatore e della cartuccia ogni volta che viene testato un campione. Questo sistema di qualità interno elimina i risultati se l'analizzatore o la cartuccia non soddisfano determinate specifiche interne.
- 2. Sono disponibili soluzioni di controllo a base acquosa per verificare l'integrità delle cartucce appena ricevute.
- 3. Inoltre, lo strumento esegue controlli elettronici interni e la calibrazione durante ogni ciclo di test e il test del simulatore elettronico fornisce un controllo indipendente della capacità dello strumento di effettuare misurazioni accurate e sensibili di tensione, corrente e resistenza dalla cartuccia. Lo strumento supera o non supera questo test elettronico a seconda che misuri o meno tali segnali entro i limiti specificati nel software dello strumento.

Per ulteriori informazioni sul Controllo di qualità, consultare il Manuale operativo di i-STAT Alinity System disponibile all'indirizzo <u>www.pointofcare.abbott</u>.

Verifica della calibrazione

La standardizzazione è il processo mediante il quale un produttore stabilisce valori "veri" per i campioni rappresentativi. Questo processo di standardizzazione consente di ottenere una calibrazione a più punti per ciascun sensore. Queste curve di calibrazione sono stabili su molti lotti.

Viene eseguita una calibrazione a un punto ogni volta che si utilizza una cartuccia che richiede la calibrazione. Durante la prima parte del ciclo di test, la soluzione di calibrazione viene automaticamente rilasciata dalla confezione di alluminio e posta sopra i sensori. Vengono misurati i segnali prodotti dalle risposte dei sensori alla soluzione di calibrazione. Questa calibrazione a un punto corregge l'offset della curva di calibrazione memorizzata. Successivamente, lo strumento sposta automaticamente il campione sui sensori e vengono misurati i segnali prodotti dalle risposte dei sensori al campione. Sebbene siano utilizzati coefficienti anziché curve di calibrazione grafiche, il calcolo del risultato è equivalente alla lettura della concentrazione del campione da una curva di calibrazione corretta.

VALORI ATTESI

TEST	UNITÀ *	INTERVALLO REFERTABILE	INTERVALLO DI RI (arterioso)	IFERIMENTO (venoso)
VALORI MISURATI				
рН		6,50 - 8,20	7,35 - 7,45 ⁵	7,31 - 7,41**
P O ₂	mmHg	5 - 800	80 - 105 ⁶ ***	
	kPa	0,7 - 106,6	10,7 - 14,0 ^{6***}	
P CO ₂	mmHg	5 - 130	35 - 45 ⁵	41 - 51
	kPa	0,67 - 17,33	4,67 - 6,00	5,47 - 6,80
VALORI CALCOLATI				
Bicarbonato/HCO ₃	mmol/L (mEq/L)	1,0 - 85,0	22 - 26**	23 - 28**
TCO ₂	mmol/L (mEq/L)	5 - 50	23 - 27	24 - 29
Eccesso di base/BE	mmol/L (mEq/L)	(-30) - (+30)	(-2) - (+3) ⁵	(-2) - (+3) ⁵
sO ₂	%	0 - 100	95 - 98	

^{*} i-STAT System può essere configurato con le unità preferite. Non applicabile per test di pH.

Conversione delle unità:

 PO₂ e PCO₂: per convertire risultati di PO₂ e PCO₂ da mmHg a kPa, moltiplicare il valore in mmHg per 0,133.

i-STAT Alinity non dispone di intervalli di riferimento predefiniti programmati nello strumento. Gli intervalli di riferimento mostrati sopra vogliono fornire una guida per l'interpretazione dei risultati. Poiché gli intervalli di riferimento possono variare in base a fattori demografici quali età, sesso ed eredità, si raccomanda di determinare gli intervalli di riferimento per la popolazione sottoposta a test.

TRACCIABILITÀ METROLOGICA

Gli analiti misurati nella cartuccia i-STAT G3+ sono tracciabili ai seguenti materiali o metodi di riferimento. I materiali di verifica della calibrazione e i controlli di i-STAT System sono convalidati per l'uso solamente con i-STAT System e i valori assegnati possono non essere commutabili con altri metodi.

рΗ

Il test di i-STAT System per il pH misura la concentrazione di quantità di sostanza di ioni idrogeno nella frazione plasmatica del sangue intero arterioso o venoso (espressa come il logaritmo negativo dell'attività molale relativa degli ioni idrogeno) per uso diagnostico *in vitro*. I valori di pH assegnati ai materiali di verifica della calibrazione e ai controlli di i-STAT System sono tracciabili ai materiali di riferimento standard SRMs 186-I, 186-II, 185 e 187 del National Institute of Standards and Technology (NIST) statunitense.

PO₂

Il test di i-STAT System per la pressione parziale dell'ossigeno misura la pressione parziale dell'ossigeno nel sangue intero arterioso o venoso (unità: kPa) per uso diagnostico *in vitro*. I valori di PO_2 assegnati ai materiali di verifica della calibrazione e ai controlli di i-STAT System sono tracciabili ai materiali di riferimento standard del National Institute of Standards and Technology (NIST) statunitense tramite standard certificati di gas medicali specialistici disponibili in commercio.

^{**} Calcolato in base al nomogramma di Siggard-Andersen. 1

^{***} Gli intervalli di riferimento mostrati sono per una popolazione sana. L'interpretazione delle misurazioni dei gas ematici dipende dalle condizioni sottostanti (ad esempio, temperatura, ventilazione, postura e stato circolatorio del paziente).

PCO₂

Il test di i-STAT System per la pressione parziale dell'anidride carbonica misura la pressione parziale dell'anidride carbonica nel sangue intero arterioso o venoso (unità: kPa) per uso diagnostico *in vitro*. I valori di **P**CO₂ assegnati ai materiali di verifica della calibrazione e ai controlli di i-STAT System sono tracciabili ai materiali di riferimento standard del National Institute of Standards and Technology (NIST) statunitense tramite standard certificati di gas medicali specialistici disponibili in commercio.

Ulteriori informazioni relative alla tracciabilità metrologica sono disponibili presso Abbott Point of Care Inc.

CARATTERISTICHE DELLE PRESTAZIONI

I dati sulle prestazioni tipiche riepilogati di seguito sono stati raccolti presso strutture sanitarie da professionisti sanitari formati sull'uso di i-STAT System e sui metodi comparativi.

Precisione*

I dati di precisione sono stati raccolti in più siti come segue: duplicati di ciascun fluido di controllo sono stati testati al mattino e al pomeriggio per cinque giorni, per un totale di 20 replicati. Le statistiche mediate sono riportate di seguito.

Test	Unità	Mat. acquoso per verifica calib.	n	Media	DS (deviazione standard)	CV (%) [coefficiente di variazione (%)]
pН		Anomalo molto basso	80	6,562	0,005	0,08
		Anomalo basso	80	7,031	0,004	0,06
		Normale	80	7,469	0,003	0,04
		Anomalo elevato	80	7,769	0,003	0,04
		Anomalo molto elevato	80	7,986	0,004	0,05
P O ₂	mmHg	Anomalo molto basso	80	72,1	2,02	2,80
		Anomalo basso	80	84,2	1,60	1,90
		Normale	80	118,8	2,10	1,77
		Anomalo elevato	80	152,1	3,49	2,29
		Anomalo molto elevato	80	377,1	8,52	2,26
P CO ₂	mmHg	Anomalo molto basso	80	17,4	0,43	2,5
		Anomalo basso	80	21,7	0,40	1,8
		Normale	80	28,7	0,57	2,0
		Anomalo elevato	80	56,2	1,18	2,1
		Anomalo molto elevato	80	84,5	1,93	2,3

^{*}Nota: dati rappresentativi, i singoli laboratori possono differire da questi dati.

Confronto metodologico

Il confronto metodologico è stato dimostrato in uno studio che ha confrontato i-STAT Alinity con i-STAT 1 Wireless (i-STAT 1W) utilizzando cartucce rappresentative. Gli studi sono stati basati sulle linee guida CLSI EP9-A3. Sono stati valutati campioni di sangue intero con anticoagulante litio eparina. I campioni sono stati analizzati in duplicato su entrambi i sistemi. È stata eseguita un'analisi di regressione di Deming ponderata utilizzando il risultato del primo replicato di i-STAT Alinity rispetto alla media dei duplicati di i-STAT 1W.

Nella tabella di confronto metodologico, n è il numero di campioni e r è il coefficiente di correlazione.

Test	Unità		Metodo comparativo i-STAT 1W
pН		n	187
•		Pendenza	0,990
		r	0,999
		Intercetta	0,075
		X _{min}	6,592
		X _{max}	8,189
P O ₂	mmHg	n	192
		Pendenza	0,986
		r	0,998
		Intercetta	0,0
		X _{min}	9
		X _{max}	705
P CO ₂	mmHg	n	149
		Pendenza	0,989
		r	0,999
		Intercetta	0,3
		X _{min}	5,1
		X _{max}	129,8

FATTORI CHE INFLUISCONO SUI RISULTATI

		EW.	
Fattore	Analita	Effetto	
Esposizione	P O ₂	L'esposizione del campione all'aria causa un aumento della P O ₂ quando i valori sono inferiori a 150 mmHg e una diminuzione della P O ₂ quando i valori sono superiori a 150 mmHg (circa il valore della P O ₂ dell'aria ambientale).	
del campione	рН		
all'aria	PC O ₂	L'esposizione del campione all'aria consente la fuoriuscita di CO ₂ , con	
	HCO₃	conseguente diminuzione della PCO ₂ , aumento del pH e sottostima HCO ₃ e TCO ₂ .	
	TCO ₂	11003 0 1002.	
Stasi venosa	pH	La stasi venosa (applicazione prolungata del laccio emostatico) e l'esercizio dell'avambraccio possono ridurre il pH a causa della produzione localizzata di acido lattico.	
Emodiluizione	pH	Un'emodiluizione del plasma superiore al 20% associata a priming delle pompe di bypass cardiopolmonare, espansione del volume plasmatico o altre terapie di somministrazione di fluidi mediante l'uso di determinate soluzioni, può causare errori clinicamente significativi nei risultati dei test di sodio, cloro, calcio ionizzato e pH. Questi errori sono associati a soluzioni che non corrispondono alle caratteristiche ioniche del plasma. Per ridurre al minimo questi errori quando si effettua un'emodiluizione superiore al 20%, utilizzare soluzioni multielettrolitiche fisiologicamente bilanciate contenenti anioni a bassa mobilità (ad esempio gluconato).	
Bassa temperatura	P O ₂	Non ghiacciare i campioni prima di effettuare il test, in quanto i risultati del test di PO_2 potrebbero risultare falsamente elevati in campioni freddi. Non utilizzare una cartuccia fredda, in quanto i risultati del test di PO_2 potrebbero risultare falsamente ridotti se la cartuccia è fredda.	
Lasciare riposare il sangue (senza esposizione all'aria)	рН	Il pH diminuisce con il riposo in condizioni anaerobiche a temperatura ambiente a una velocità di 0,03 unità di pH all'ora. ¹	
	P O ₂	Il riposo in condizioni anaerobiche a temperatura ambiente comporta un diminuzione della P O ₂ a una velocità di 2–6 mmHg all'ora. ¹	
	P CO ₂	Il riposo in condizioni anaerobiche a temperatura ambiente comporta un aumento della <i>P</i> CO ₂ di circa 4 mmHg all'ora.	
	HCO ₃ TCO ₂	Se si lascia riposare il sangue (senza esposizione all'aria) prima dell'analisi, si verifica un aumento della P CO ₂ e una diminuzione del pH,	
	1002	della la	

Fattore	Analita	Effetto	
		che determineranno una sovrastima di HCO ₃ e TCO ₂ a causa di processi metabolici.	
	P CO ₂	L'uso di provette ad aspirazione parziale (provette sottovuoto regola per aspirare un volume inferiore a quello della provetta, ad esempio ui	
Riempimento insufficiente o	HCO₃	provetta da 5 mL con vuoto sufficiente per aspirare solamente 3 mL) non è consigliato a causa della possibile riduzione dei valori di P CO ₂ ,	
aspirazione parziale	TCO ₂	HCO ₃ e TCO ₂ . Anche un riempimento insufficiente delle provette per il prelievo ematico può causare una riduzione dei risultati di P CO ₂ , HCO ₃ e TCO ₂ . Durante il riempimento di una cartuccia, è necessario prestare attenzione a non creare bolle nel campione con la pipetta per evitare la perdita della CO ₂ nel sangue.	
Metodo di calcolo	sO ₂	Valori di sO ₂ calcolati da una P O ₂ misurata e da una curva di dissociazione dell'ossiemoglobina presunta possono differire significativamente dalla misurazione diretta. ³	
Condizioni cliniche	НСО₃	Le cause dell'acidosi metabolica primaria (diminuzione di HCO ₃ calcolato) sono chetoacidosi, acidosi lattica (ipossia) e diarrea. Le cause dell'alcalosi metabolica primaria (aumento di HCO ₃ calcolato) sono vomito e trattamento antiacido.	
Propofol (Diprivan®) o tiopentale sodico	P CO ₂	Si consiglia l'uso di una cartuccia G3+, che non è soggetta a interferenza clinicamente significativa a tutte le dosi terapeutiche rilevanti.	
Sensibilità P O ₂	P CO ₂	In campioni di pazienti in cui la PO_2 è > 100 mmHg oltre l'intervallo normale (80-105 mmHg), è possibile osservare un aumento della PCO_2 di circa 1,5 mmHg (con un intervallo compreso tra 0,9 e 2,0 mmHg) per ogni aumento di 100 mmHg nella PO_2 .	
	***************************************	Ad esempio, se un paziente ossigenato ha una P O ₂ misurata di 200 mmHg e una P O ₂ normale di 100 mmHg, l'impatto sul risultato della P CO ₂ può essere aumentato di circa 1,5 mmHg.	

LEGENDA DEI SIMBOLI

Simbolo	Definizione/Uso
2 m	Conservazione per 2 mesi a temperatura ambiente a 18-30 °C.
	Utilizzare entro o data di scadenza. Una data di scadenza, espressa come AAAA-MM-GG, indica l'ultimo giorno in cui è possibile utilizzare il prodotto.
LOT	Numero di lotto o codice lotto del produttore. Il numero di lotto appare accanto a questo simbolo.
Σ	Sufficiente per <n> test</n>
EC REP	Rappresentante autorizzato per gli Affari Normativi nell'Unione europea.
1	Limiti di temperatura. I limiti superiore e inferiore per la conservazione sono indicati accanto alle linee orizzontali superiore e inferiore.
REF	Numero di catalogo, numero di elenco o riferimento
2	Non riutilizzare.
***	Produttore
[]i	Consultare le istruzioni per l'uso o il Manuale di sistema per le istruzioni.
IVD	Dispositivo medico-diagnostico in vitro
C€	Conforme alla direttiva europea sui dispositivi diagnostici <i>in vitro</i> (98/79/CE)
Rx ONLY	Solo per uso dietro prescrizione medica.

Informazioni aggiuntive: per ottenere ulteriori informazioni sul prodotto e supporto tecnico, fare riferimento al sito web aziendale all'indirizzo www.pointofcare.abbott.

Riferimenti bibliografici

- 1. Pruden EL, Siggard-Andersen O, Tietz NW. Blood Gases and pH. In: C.A. Burtis and E.R. Ashwood, ed. *Tietz Textbook of Clinical Chemistry*. Second Edition ed. Philadelphia: W.B. Saunders Company; 1994.
- Tietz NW, Pruden EL, Siggaard-Andersen O. Electrolytes. In: C.A. Burtis and E.R. Ashwood, ed. *Tietz Textbook of Clinical Chemistry*. Second Edition ed. Philadelphia: W.B. Saunders Company; 1994.
- 3. CLSI. Blood Gas and pH Analysis and Related Measurements; Approved Guideline. *CLSI document C46-A*. 2001.
- 4. Young DS. *Effects of Drugs on Clinical Laboratory Tests*. 3rd ed. ed. Washington, DC: American Association of Clinical Chemistry; 1990.
- 5. Painter PC, Cope JY, Smith JL. Reference Ranges, Table 41–20. In: C.A. Burtis and E.R. Ashwood, ed. *Tietz Textbook of Clinical Chemistry*. Second Edition ed. Philadelphia: W.B. Saunders Company; 1994.
- 6. Statland BE. *Clinical Decision Levels for Lab Tests*. Oradell, NJ: Medical Economic Books; 1987.
- Clinical and Laboratory Standards Institute (CLSI). Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Third Edition. CLSI document EP09-A3. 2013.

i-STAT is a trademark of the Abbott Group of companies.

Diprivan is a registered trademark of the AstraZeneca group of companies.

©2019 Abbott Point of Care Inc. All rights reserved. Printed in USA.

